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Launched by Evans’ seminal work.1 homochiral oxaxolidinoncs are now well-established versatile 
auxiliaries in asymmettic synthesis.u We report here that these hetuocyclcs 3 are obtained when N-terr- 
butoxycarbonyl derivatives (N-Boc) of p-amino alcohols pn treated with p-tolucnesulfonyl chloride (TsCl). 
Though transformation of amines into urethanes is a widely used protccdve method.4 it can be inked from 
scarce accounts~ that, even in non-acidic medium, these pmtccdng groups should not be considued as definitely 
inert. Actually the Ftaction hereafter described rtsults tknn nu&ophilic displacement of the tosyloxy leaving 
gnmpbythccarbnmakmoiety. _ 
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‘Ihis cyclization is highly promoted by the presence of a N-methyl substitucnt. Thus, whereas reaction of 
N-Boc-N-methyl-(R)-phenylglycinol4 with T&l at 0°C dkctly leads to oxaxolidinone 6, the same treatment 
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applied to IV-Boc-(R)-phenylglycinol 5 affords the tosyloxy derivative 7. Cyclization of compound 7 was 
effected subsequently by heating at 6O“C and yielded oxaxoM~~ 8. 
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In order to get some insight into the mechanism of the cyclixation. we next examined the behaviour of 
compounds belonging to the ephedrine family. N-Boc derivatives of (lR,2S)-ephedrine 9 and (lR,2S)- 
norephedrine 10 led stemoselectively to the conesponding oxaxolidinones 11 and 12. Borh compounds 11 and 
12 exhihit a rruns relationship between the ring substituents6 which arises tknn inversion of the reactive carbon 
center. This result iS consistent with a SN~ process involving a nucleophihc attack of the carbamate moiety onto 

the btkylic center. 

9 R-Me 11 R=Me 
10 R=H 12 R-H 

On the other had, N-Boc derivatives of (&?!i)-pseudoe@&me 13 and (lR,2R)-n<Hpwti~ 
14 arc less pne to cyclize; this can be attributed tosteric hi&&e during the fannation of the cormqonding 
oxaxolidinones since now the afore-mentioned SN~ pathway would lead to hemrocycles 15 and 17 having a cis 
relationship between ring substituents. Here again, the N-methyl substrate 13 reacts faster than 14 and the 
N-methyl gtoup also has an effect on the stereochemical outcome of these cyclizations. While the N-methylated 
compound 13 stemoselectively affords the cis oxaxolidinone 15 via a SN~ intramolecular process.* its analogue 
14 leads, with a poor yield, to both trans and cis hctcrocyclcs 16 .and 17 in a 80:20 respective ratio. This is 
indicative of a SN~-like process in the latter case which is devoid of the above nucleophilic enhancementof the 
aubamate moiety pmmoted by the N-methyl substituent. 
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From the early age of mechanisms in organic chemistry9 to nowadays.10 rate enhancement due to alkyl 
substituent is a recurtent event in the field of cyclixation reactions. t1 Recently, Jung and Gervayt2 demonstrated 
that, at least for inrrsmolecular Diels-Alder nxctions, the “Thorpe-Ingold effect” can be accounted for by a higher 
propohm of a man reactive rotamer in the case of gemdialkylated substrates. In the present occurrence, this 
issue was addressed by means of AM1 calculations13 performed on model reactions with molecules 18-19 as 
substrates and 29-21 as their corresponding cyclixed derivatives. 
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Compounds 18 and 19 show similar reactive conformations conesponding to the one depicted above. The 
most significant data are colkcted in the Table. I&pendently of the natute of the R gtoup, the structure E, which 
is required for the cyclization to occur, is pteferted over structute Z. In agteement with the Thoipe-Ingold effect, 
there is a compression of the internal C-N--C angle due to N-methyl substitution. Moreover these calculations 
show that thete is a sign&ant energy diffetence during the cyclixation processes favoring the reactivity of the N- 
methylated substrate lg. Gwing to the easier pmductiort of wfutr oxazolidinones over their cis isomers, it can be 
hypothesized that the cyclixation transition state is product-like and that the 6.2 kcal.mole-1 energy difference 
conesponds to relative activation energies. 

Table. AM1 Calculations on Carbamate Models 18 and 19 

substrate 

18 

19 

HfZ - H/E 

(kcal.mole-l) 

1.35 

1.75 

C-N=C angle AHofcychxation 

@calmok+) 

118.2’ 106.4 

121.8’ 112.6 

This theoretical conclusion most likely can be extended to the above experimental results.14~15 Themfore a 
confotmational effect would be responsible for the teactivity enhancement promoted by the N-methyl substituent. 
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